l-Delay Input and Initial-State Reconstruction for Discrete-Time Linear Systems

نویسندگان

  • Siddharth Kirtikar
  • Harish J. Palanthandalam-Madapusi
  • Elena Zattoni
  • Dennis S. Bernstein
چکیده

Prior results on input reconstruction for multi-input, multi-output discretetime linear systems are extended by defining l-delay input and initial-state observability. This property provides the foundation for reconstructing both unknown inputs and unknown initial conditions, and thus is a stronger notion than l-delay left invertibility, which allows input reconstruction only when the initial state is known. These properties are linked by the main result (Theorem 4), which states that a MIMO discrete-time linear system with at least as many outputs as inputs is l-delay input and initial-state observable if and only if it is l-delay left invertible and has no invariant zeros. In addition, we prove that the minimal delay for input and state reconstruction is identical to the minimal delay for left invertibility. When transmission zeros are present, we numerically demonstrate l-delay input and state reconstruction to show how the input-reconstruction error depends on the locations of the zeros. Specifically, minimum-phase zeros give rise to decaying input reconstruction error, nonminimumphase zeros give rise to growing reconstruction error, and zeros on the unit circle give rise to persistent reconstruction error. S. Kirtikar University of Michigan, Ann Arbor, MI, USA e-mail: [email protected] H. Palanthandalam-Madapusi Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA e-mail: [email protected] E. Zattoni University of Bologna, Bologna, Italy e-mail: [email protected] D.S. Bernstein ( ) Aerospace Engineering Department, University of Michigan, Ann Arbor, MI, USA e-mail: [email protected] Circuits Syst Signal Process

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

T-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY

A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...

متن کامل

Partial Eigenvalue Assignment in Discrete-time Descriptor Systems via Derivative State Feedback

A method for solving the descriptor discrete-time linear system is focused. For easily, it is converted to a standard discrete-time linear system by the definition of a derivative state feedback. Then partial eigenvalue assignment is used for obtaining state feedback and solving the standard system. In partial eigenvalue assignment, just a part of the open loop spectrum of the standard linear s...

متن کامل

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CSSP

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011